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An analysis is presented in this paper for a two-axis rate gyro subjected to linear feedback
control mounted on a space vehicle, which is spinning with uncertain angular velocity �

�
(t)

about its spin of the gyro. For the autonomous case in which �
�
(t) is steady, the stability

analysis of the system is studied by Routh}Hurwitz theory. For the non-autonomous case in
which �

�
(t) is sinusoidal function, this system is a strongly non-linear damped system

subjected to parametric excitation. By varying the amplitude of sinusoidal motion, periodic
and chaotic responses of this parametrically excited non-linear system are investigated using
the numerical simulation. Some observations on symmetry-breaking bifurcations,
period-doubling bifurcations, and chaotic behavior of the system are investigated by various
numerical techniques such as phase portraits, PoincareH maps, average power spectra, and
Lyapunov exponents. In addition, some discussions about chaotic motions of this system
can be suppressed and changed into regular motions by a suitable constant motor torque are
included.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

A number of studies over the past few decades have shown that the chaotic phenomena are
observed in many physical systems with non-linearity and external excitation [1}3]. The
non-linearity of a system, through the various system parameters, exhibits a variety of
non-linear behaviors such as jump phenomenon, multiple attractors, subharmonic
vibrations, symmetry-breaking bifurcations, period-doubling bifurcations, crisis and chaos
[4}7]. In addition, a symmetry-breaking bifurcation occurring before a period-doubling
bifurcation, and the appearance of chaos amidst a cascade of period-doubling bifurcations
have been observed in driven damped pendulums or Du$ng's oscillators by MacDonald
[8] and RaK ty [9]. The bifurcation behaviors mentioned above occur at the boundaries of
stability regions. Therefore, an analysis of instability regions in parametric space is a critical
problem. In a gyroscopic system, a single-axis rate gyro mounted on a space vehicle free to
move in various ways also exhibits complex non-linear and chaotic motions. Its stability
was broadly characterized into the stable regions in which the angular velocity of a given
vehicle was measured by Singh [10] and Ge et al. [11]. The non-linear nature and chaotic
motion of a single-axis rate gyro were investigated by Ge and Chen [12, 13] when the
vehicle is spinning sinusoidally with respect to the spin axis of the gyro. This system is
characterized by parametric excitation and exhibits complex non-linear phenomena in the
presence of sinusoidal excitation, including subharmonic vibrations, Hopf bifurcation,
symmetry-breaking bifurcations, a series of period-doubling bifurcations, and chaos. In
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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practice, chaotic motions are undesirable in many mechanical systems. Ge and Chen [14]
used resonant parametric perturbations to change a chaotic motion into a regular one. In
this paper, an analysis is presented of a two-axis rate gyro subjected to linear feedback
control mounted on a space vehicle that is spinning with an uncertain angular velocity�

�
(t)

about the spin of the gyro. This is a two-degree-of-freedom system subjected to the complex
non-linear terms and parametric excitation. Here, Routh}Hurwitz theory [15] is applied to
analyze the stability of the autonomous case in which �

�
(t) is steady. For the

non-autonomous case in which �
�
(t) is sinusoidal function, a number of numerical

techniques are used to detect the existence of symmetry-breaking bifurcations,
period-doubling bifurcations, and chaos of the parametrically excited non-linear system.
The natures of the periodic and chaotic motions are shown in phase plane diagrams,
PoincareH maps, and average power spectra. The qualitative bifurcation diagrams,
parametric diagrams and quantitative Lyapunov exponents in parametric space are also
computed to determine the values of birfurcation points as well as chaos onset. In addition,
the chaotic motions of this system can be suppressed and changed into regular motions by
a suitable constant motor torque.

2. EQUATIONS OF MOTION

We consider the model of a two-axis rate gyro mounted on a space vehicle as shown in
Figure 1. LetX,>,Z be a set of axes attached to the platform and �, �, � be gimbal axes. The
rotor is mounted in the inner gimbal that can turn about axisXwith rotational angle �. The
rotation of the inner gimbal is resisted by the damping torque d

�
�Q and the control-motor

torque ¹
�
. The outer gimbal rotates about axis> with rotational angle �, and motion about

this axis is also resisted by torsional spring and damping torques de"ned by k
�
� and d

�
�Q ,

respectively. Using Lagrange's equation [15], the di!erential equations of a two-axis gyro
with feedback control was derived as follows (see Appendix A(I) for detail):
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denote the angular velocity components of the platform along

output axis X, input axis >, and normal axis Z respectively. A, B("A), C and A
�
, B

�
,

C
�
denote the moments of inertia of rotor and inner gimbal about �, �, and � respectively.

A
�
denotes the moment of inertia of the outer gimbal about axis >. ¹

�
is the control-motor

torque along the output axis of the system to balance the corresponding gyroscopic torque.
The torque and electric current of control-motor can be modelled by the following
relationship:
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where electromotive force proportional to the di!erence between the prescribed motion
�
�
(t) and the rotational angle �, that is u"K

�
(�

�
!�), is applied to the control-motor. I, R,

¸, and K
�
are the current, resistance, inductance, and back-electromotive constant of the
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Figure 1. The feedback system (a) the rate gyro; (b) the block diagram.
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control-motor; K
�

denotes the torque constant of the control-motor. The prescribed
motion of the gyro is desired to be "xed at the origin, i.e., �

�
"0, in which the relationship of

the output angle � proportional to the input angular velocity �
�
is held.

Considering both the mechanical time constant is much larger than the electrical time
constant and the e!ect of back electromotive force is to be neglected, equations (3) and (4)
can be simpli"ed by the following relationship: ¹

�
"!K

�
K

�
�/R"!k

�
�. Equations

(1)}(4) thus represent a feedback control system in which position feedback is applied to the
gyro motion.

3. STABILITY ANALYSIS

Firstly, we are interested in the stability of the equilibrium point (�, �Q , �, �Q )"(0, 0, 0, 0),
which is a measuring datum point of the device, of this gyro when angular velocity along
both input and output axes are zero, i.e., �

�
"0 and �

�
"0. For the autonomous system

�
�
(t)"�

��
"const., the stability of the origin of the system is investigated as follows. Let
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the disturbed motion of the origin be �"0#x
�
, �Q "0#x

�
, �"0#x

�
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�
,

where x
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are disturbances, then the di!erential equations (1)}(4) for disturbances

are
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Appendix B.
The origin (x

�
, x

�
, x

�
, x

�
)"(0, 0, 0, 0) is a trivial solution of equation (5). Expanding

equation (5) about the origin, we obtain
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where J"TF/TX�X�0 is the Jacobian matrix of equation (5) and N
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higher order terms in x
�
. Assuming that the perturbations are su$ciently small to permit

higher order terms in x
�
to be ignored, the Routh}Hurwitz criterion [15] is applied to check

the stability of the system.
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	�#(!a
��

!a
��
)	�#(!a

��
!a

��
#a

��
a
��

!a
��
a
��
)	�

#(a
��
a
��

#a
��
a
��
)	#a

��
a
��

"0

or

	�#a
�
	�#a

�
	�#a

�
	#a

�
"0. (8)

The Hurwitz matrix for the above polynomial is
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Figure 2. The numerical simulation of a two-axis gyro when �
�
is constant.
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The necessary and su$cient conditions for all the roots of characteristic equation to have
negative real parts are provided by the Routh}Hurwitz criterion, i.e., the principle minors of
the Hurwitz matrix must all be positive. So, the stability conditions are obtained as follows:
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where e
�
, i"1,2,2,13, are shown in Appendix C.

In the parameter values of gyro parameters [12, 13] are shown in Appendix A(II), from
the above analysis, the motion is asymptotically stable when the following condition is held:

�
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"2004)99, (14)

i.e., inequalities (10)}(13) are satis"ed.
From Figure 2(a), we see that the trajectory of the perturbed motion, which starts from

the disturbances �"0)1 rad, asymptotically converges to the origin from the initial state
when the condition �

���
(�

��
(�

���
is satis"ed. From Figure 2(b), the trajectory of the

perturbed motion converges to the origin but not oscillate when �
��

is near one of two
limits (�

���
or �

���
). We can ensure that the system is local asymptotical stable when

equation (14) is held. On the other hand, Figures 2(c) and 2(d) show that the trajectory
moves far away from the origin. This means that the system is unstable. For the case in
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which �
�
is time varying, the origin may be a stable equilibrium point in some conditions.

In Figure 3, we obtain the trajectory corresponding to an asymptotical system in the phase
plane by assuming that the amplitude of the sinusoidal angular velocity �

�
below certain

limits. When the amplitude of the sinusoidal angular velocity�
�
exceeds certain limits, the

"xed point becomes limit cycle plotted in Figure 4 through Hopf bifurcation f+15)4.
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4. BIFURCATION ANALYSIS

For the case in which �
�
is time varying, �

�
"0 and �

�
"0, the origin is also an

equilibrium point. However, as the following analysis, with the harmonic input with respect
to the spin axis Z, i.e., �

�
"f sin�

�
t , the origin will become a hyperbolic closed orbit and

the e!ects of parametric excitations gradually increase with the input amplitude increasing
progressively. For convenience, the following parameters are used: the natural frequency of
equation (1) �

�
"[k

�
/(A#A

�
)]���; frequency ratio �"�

�
/�

�
, where the exciting

frequency is close to twice the natural frequency; time scale 
"�
�
t; damping ratio

�
�
"d

�
/[2(A#A

�
)�

�
], �

�
"d

�
/[2(A#B

�
#A

�
)�

�
]; �

�
"H

�
/[(A#A

�
)�

�
], �

�
"k

�
/[(A#

B
�
#A

�
)��

�
], �

�
"H

�
/[(A#B

�
#A

�
)�

�
]; equations (1)}(4) now can be simpli"ed to

�$ #2�
�
�Q #k�#�

�
�Q #NF

�
(�, �, 
)"0, (15)

�$ #2�
�
�Q #�

�
�!�

�
�Q #NF

�
(�, �,
)"0, (16)

where k"1, �Q "d�/d
, �Q "d�/d
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�
(�,�, 
) and NF

�
(�,�, 
), shown in Appendix D,

represent the non-linear forcing function.
RaK ty [9] has shown that oscillators with external excitation and antisymmetric

non-linear terms possess inversion-symmetric attractors with odd periods, i.e., non-linear
terms F (!x)"!F(x), the period of attractors: ¹
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where � (
), � (
) and �I (
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) are the steady state solutions of equations (15) and (16) in the
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Figure 8. The bifurcation diagram.

CHAOTIC AND NON-LINEAR DYNAMICS OF GYRO 549
portraits of attractors � (
), �(
) and �I (
), �I (
) with odd periods coincide together, i.e.,
� (
)"�I (
), � (
)"�I (
); the inversion-symmetric attractors are odd-period functions that
coincide with the numerical simulation in period*2¹ (period*¹

�
) and period*6¹

(period*¹
�
) attractors as shown in Figure 4 where the symbols &&#'' and &&�'' indicate one

period*¹ of function �
�
("f sin�
). On the other hand, when the inversion symmetry is

broken, it implies a pair of attractors � (
), � (
) and �I (
), �I (
) are inversions of each other, as
illustrated in Figure 5.

5. NUMERICAL SIMULATIONS AND DISCUSSION

With the system parameter f varied, the system results obtained by numerical integration
in the phase planes, PoincareH maps, average power spectra, bifurcations, and Lyapunov
exponents diagrams. The trajectory of motion asymptotically converges to a hyperbolic
"xed point at the origin, as shown in Figure 3 where f"15, before the parameter f+15)4.
After Hopf bifurcation, the original equilibrium point becomes unstable and a period*2¹

stable symmetric limit cycle arises as shown in Figure 4, where ¹"2
/�. A system with
a symmetric non-linear function can undergo either a symmetry-breaking bifurcation for
the symmetric solution of the system or a period-doubling bifurcation for the asymmetric
solution of the system. When f+29)5, a symmetry-breaking bifurcation occurs. After this
bifurcation, the original stable period*2¹ attractor becomes unstable, a pair of stable
period*2¹ attractors arise and invert each other as shown in Figure 5 where f"31)5. As
the parameter f increases further across f+32, a stable periodic orbit appears with double
the period of the original orbit, thereby indicating a period-doubling (#ip) bifurcation.
When the parameter is increased, a cascade of #ip bifurcations occurs and leads to the onset
of chaos. At f+34, the chaotic attractor abruptly disappears and a period*6¹ symmetric
orbit appears, as shown in the phase plane and average power spectrum (see Figures 4 and 6).
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Indeed, for the large parameter f"45, an inversion-symmetry period!2¹ attractor is also
obtained as shown in Figure 7.
To investigate bifurcation further, a PoincareH plane was used to display the bifurcation

diagram, which shows PoincareH "xed points x
�
plotted against the system parameter f. As

the system parameter f is gradually increased through the parametric space, the bifurcation
diagram obtained shows di!erent types of bifurcations and chaos in Figure 8. The Hopf
bifurcation at f+15)4, symmetry-breaking bifurcation at f+29)5, and period-doubling
bifurcation at f"32 are clearly shown. To investigate the periodic and chaotic motions in
the bifurcation diagram further, the phase planes, PoincareH maps, and power spectra are
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spectrum for f"36)3.
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Figure 12. The largest Lyapunov exponents as a function of f.
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used. After a cascade of period-doubling bifurcations, the dual response becomes chaotic
rather than periodic for f"32)5, as shown in Figure 9. When f"33, conjunction of the two
inverse chaotic attractors creates a larger attractor, as shown in Figure 10. With the
parameter increased, a large-amplitude chaotic motion appears in the phase plane,
PoincareH map, and power spectrum as shown in Figure 11, where f"36)3. The power
spectrum of a chaotic motion is a continuous board spectrum.
To con"rm the chaotic dynamics, a qualitative and quantitative Lyapunov-exponent

spectrum was performed. The algorithm for calculating the Lyapunov exponents was
developed byWolf et al. [16]. A spectrum of the largest Lyapunov exponent as a function of
the parameter f is shown in Figure 12. As one of the Lyapunov exponents is positive, the
motion is characterized as chaotic. When at least one Lyapunov exponent 	

�
"0 exists,

motions are not stationary. For periodic motions, the Lyapunov exponents are
non-positive and include only one zero Lyapunov exponent, while one negative exponent
becomes zero when one type of periodic motion bifurcates to another.
For f"36)3, the Lyapunov exponents were found to be 	

�
"0)171, 	

�
"0,

	
�
"!0)936, 	

�
"!0)938, 	

�
"!1)534 and the Lyapunov dimension d

�
"2)183 was

also calculated using the relation proposed by Frederickson et al. [17]:

d
�
"j#



�
�
�

	
��	


��
�
,

where 	
�
is the largest Lyapunov exponent and j is the index of the smallest non-negative

Lyapunov exponents. From the above discussion, it is evident that Lyapunov exponents are
a measure of the fractal geometry of the attractor and the property of sensitivity dependence
on initial conditions.
Physically, chaos may be desirable or undesirable, depending on the application. In

mechanical systems, chaos may lead to irregular motions, so it has to be reduced or
suppressed. In this case, we used a feedback constant control torque with the assistance of



Figure 13. The bifurcation diagram and the largest Lyapunov exponent as a function of k.
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the Lyapunov exponent calculations to bring the system from a chaotic regime to a regular.
For changing the parameter k form 0)5 to 1)5, there are the bifurcation diagram and the
spectrum of the largest Lyapunov exponents 	

���
as the function of the sti!ness coe$cient

k of equation (15) in Figure 13. As 	
���

(0 for the suitable k, the system is periodic.

6. CONCLUSIONS

In this paper, a two-axis rate gyro with sinusoidal velocity about its spin axis Z exhibits
the non-linear characteristic of both sine, cos function and parametric excitation when the
parameter is varied. For the autonomous case in which�

�
is steady, the stability conditions

were derived by the Routh}Hurwitz criterion. A variety of parametric studies were
performed to analyze the behavior of periodic attractors route to chaos via distinct
bifurcations by using the numerical simulations. The behaviors of a symmetry-breaking
precursor to period-doubling bifurcations and a cascade of period-doubling route to chaos
occurred in this system. The occurrence of the chaotic motion of the system is also detected
by calculating bifurcation diagrams, power spectral diagrams and Lyapunov exponents. In
addition, we consider a suitable feedback constant force torque to suppress chaos in the
system by computing Lyapunov exponents.
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APPENDIX A

(1) Let X, >, Z be a set of axes attached to the platform, as depicted in Figure 1. We
denote the column matrix corresponding to a system of co-ordinates X, >, Z by using the
gimbal axes �, �, �, so that the transformation from theX,>,Z to the �, �, � system is written
���"[R]�X�, where ���"[�, �, �]�, �X�"[X,>, Z]�, [R]"[cos�, 0, !sin�; sin �
sin�, cos �, sin � cos�; cos � sin�, !sin �, cos � cos�].
If �

�
, �

�
, �

�
denote the angular velocity components of the platform the gimbal angular

velocity become

��"�Q #�
�
cos�!�

�
sin�,

��"�Q cos �#�
�
sin � sin�#�

�
sin � cos�#�

�
cos �,

��"!�Q sin �#�
�
cos � sin�#�

�
cos � cos�!�

�
sin �.

The rotor has the angular velocity �Q relative to the gimbal, so that the angular velocity of
the rotor in terms of components about the gimbal axes can be written as

��"�� , ��"�� , ��"��#�Q .

Denoting by A, A, C and A
�
, B

�
, C

�
the moments of inertia of the rotor and gimbal,

respectively, about axes �, �, � and by A
�
the moments of outer gimbal about axis>, we can
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write the kinetic energy

¹"1/2 [A (���#��� )#C��� #A
�
���#B

�
���#C

�
��� #A

�
(�Q #�

�
)�].

The potential energy is simply

<"1/2k
�
��,

Whereas Rayleigh's dissipation function has the form

F"1/2 [d
�
�Q 2#d

�
(�Q #�

�
)�].

Recalling that ¸"¹*<, where ¸ is the Lagrangian, and Lagrange's equations for
a system with dissipative torques and motor torque ¹

�
takes the form

(A#A
�
) [�$ !(�

�
sin�#�

�
cos�)�Q #(��

�
cos�!��

�
sin�)]!(A#B

�
!C

�
)����

!(!��)H�
#d

�
�Q "¹

�
,

d/dt [(A#B
�
)�� cos �!C

�
�� sin �#A

�
(�Q #�

�
)!sin �H

�
]#d

�
(�Q #�

�
)#k

�
�"0,

d/dt [C(��#�Q )]"0,

where H
�
"C (��#�Q )"const.

(II) ¹he values of gyro parameters: (A#A
�
)"54 dyn cm s�, H

�
"10)8�10� dyn cm s,

k
�
"54�10� dyn cm/rad, d

�
"7560 dyn cm/rad s, (A#B

�
)"64dyn cm s�, C

�
"

10 dyn cm s�, A
�
"10 dyn cm s�, k

�
"54�10
 dyn cm/rad, d

�
"7560 dyn cm rad s.

APPENDIX B

F
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(x
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, x
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, x
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, x
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) cos (x
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) x
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APPENDIX C
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